The mycological cure rate of the patients treated with nystatin a

The mycological cure rate of the patients treated with nystatin at days 7–14 and days 30–35 in VVC was 85.4% (129/151) and 83.4% (126/151) respectively. We conclude that fluconazole

resistance was rare and both C. albicans and non-albicans Candida species were susceptible to nystatin in vitro. The decrease in fluconazole susceptibility or a low concentration of fluconazole in the vagina was probably related to fluconazole therapeutic failure. “
“Vulvovaginal candidiasis is one of the most frequent disorders in obstetrics and gynaecology. Approximately three-quarters of all adult women experience at least one episode of vulvovaginal Selleck Vadimezan candidiasis during their life span. Diabetes mellitus (DM) increases the rate of vaginal colonisation and infection with Candida species. The secreted acid proteinase might be especially relevant in the pathogenesis of vulvovaginal candidiasis. The aim of this study was to determine the acid proteinase activity in the samples of Candida albicans from diabetic patients with vulvovaginal candidiasis by a fluorometric method. Vaginal swabs were taken from 33 women (aged between 22 and 57 years) having symptoms of vaginitis.

Patients were divided into three groups: control group, controlled diabetic group and uncontrolled diabetic group. The proteinase activity in the culture supernatants was determined by a modified fluorometric method. Acid proteinase activities were significantly increased in the uncontrolled diabetic group in comparison with both the control group and the controlled

diabetic group (P < 0.05). Acid proteinase may play an important role in C. albicans selleckchem pathogenesis in diabetic patients. Improving glucose control may reduce the risk of Candida colonisation and potentially symptomatic old infection, among women with diabetes and hence may be useful even for weaker enzyme activity measurements. “
“Die schwer zu diagnostizierenden Erkrankungen durch Aspergillus spp. erfordern ergänzende serologische Teste. Das ist das Ergebnis selektiver Literatur-Recherche unter Berücksichtigung aktueller Leitlinien. Für die Manifestationsformen der Aspergillose wird derzeit zur Ergänzung der konventionellen Diagnostik (Bildgebung, Mikroskopie und Kultur) die Bestimmung folgender Parameter aus Blutserum empfohlen: Invasive und chronisch-nekrotisierende Aspergillose: Aspergillus-Galactomannan-Antigen. Testformat: EIA auf der Basis des Ratten-MAb EB-A2. Cut-off 0,5 (Index). Überwachung von Hochrisiko-Patienten: 2 x wöchentlich. Aspergillus-IgG (Testformat: EIA) als Bestätigungs-Test bei Rekonstitution der Leukozyten-Funktion unter Therapie. Aspergillom: Aspergillus-IgG (Testformat: EIA). Allergische Aspergillose: Aspergillus-IgE (Testformat: RAST). Der Galactomannan-Antigen-Nachweis hat einen festen Stellenwert in der Diagnostik invasiver Aspergillosen. Die Evaluation von Aspergillus-Nukleinsäure-Amplifikations-Assays steht noch aus. Diseases caused by Aspergillus spp.

IV inoculated parasites reach the

IV inoculated parasites reach the buy BVD-523 liver within minutes (26), whereas sporozoites inoculated into the skin slowly trickle out of the inoculation site over a period of 1–3 h (27). Our results indicate that the lower parasite liver load after ID inoculation is unlikely to be explained by a delayed arrival

of sporozoites in the liver. Comparison of the parasite liver load at 35 h post-ID injection was still ±15 times lower compared to the parasite liver load at 30 h post-IV injection (Figure 2). Despite differences between parasites species, including among others infectivity (28) or host cell preference (29–31), our data in P. berghei parallel previous results in P. yoelii studies (25). Therefore, the relatively low level of parasites capable of reaching the liver after ID injection is likely a common feature among Plasmodium species.

CD8+ T cell responses are known to be essential for protection induced by attenuated live sporozoite immunization in rodent models. Our data corroborate previous studies on P. berghei RAS-induced immunity showing expansion of CD8+ memory T cells, mainly in the liver, together with high IFNγ production in IV immunized Pritelivir cell line mice (12–15). The low immune responses observed after ID immunization likely follow the low parasite liver load. RAS ID and subcutaneous immunization of human volunteers also show low protection levels, and in nonhuman primates and mice subcutaneous or ID immunization lead to lower (-)-p-Bromotetramisole Oxalate IFNγ responses compared to IV sporozoite immunization

(18). Despite the differences in phenotyping and gating strategy, CD8+ effector (memory) T cells (CD44hi CD62L-) and not central memory T cells (CD44hi CD62L+) are identified as induced T-cell subset. In another study using the P. yoelii model, major CD8+ T cell responses were generated in the draining lymph nodes after infected mosquito bites or ID inoculation of sporozoites. Although parasite liver load was reduced, complete protection defined as impediment of blood-stage infection was not evaluated (32). We did not test the regional lymph nodes response and cannot exclude a possible contribution but our data clearly demonstrate that ID inoculation is inefficient in inducing protection. In addition, a measure of sporozoite load in regional lymph nodes following ID inoculation would have been informative. Unfortunately, in vivo visualization of PbGFP-Luccon is not possible because of a relatively low luciferase expression at the sporozoite stage (22). Next to cellular components, antibody responses can contribute to protection by whole sporozoite immunization (8). Our data suggest that induced functional antibodies may contribute to protection but are more likely related to exposure.

Expression of transcription factors regulating earlier stages (IR

Expression of transcription factors regulating earlier stages (IRF4, PRDM1) was not affected by BMP-6. Taken together, these results show that BMPs are potent suppressors of naive and memory B cells. When B cells are activated by T-cell-dependent antigens, they start proliferating and can form germinal centers (GCs) where affinity maturation and class switch recombination (CSR) of the immunoglobulin (Ig) take place. Secreted and membrane-bound

molecules made by T cells are important for the GC reaction, and CD40L is one of the essential molecules 1. GC B cells can differentiate to Ig-producing plasma cells, and cytokines like IL-4, IL-6, IL-10 and TGF-β direct which Ig isotype Hydroxychloroquine chemical structure is produced 2–4. IL-21 has emerged as a strong inducer of B-cell differentiation and Ig production in vitro, and the strength of IL-21 exceeds other positive regulators like IL-2, IL-4 and IL-10 5–8. The combination of CD40L and IL-21 can induce CSR to IgA and IgG 7. The different stages of plasma cell development are regulated by a web of interacting Palbociclib concentration transcription

factors. Pax5 and BCL6 are highly expressed in GC B cells, but they are not expressed in plasma cells where B-lymphocyte-induced maturation protein 1 (Blimp-1) and X-box binding protein 1 (XBP-1) are highly expressed 9. BCL6 is required for GC formation 9 and Pax5 upregulates the enzyme activation-induced cytidine deaminase (AID) which is necessary for CSR 10, 11. Another primary function of BCL6 and Pax5 is to repress Blimp-1 and XBP-1 respectively, which are both necessary for plasma cell differentiation 12, 13. To allow terminal B-cell differentiation, Pax5 and BCL6 must be repressed by Blimp-1 14, 15 and the mutual repression of Blimp-1 and BCL6 forms a feedback loop enforcing irreversible plasmacytic differentiation. Blimp-1 induces plasma cell differentiation by repressing genes involved in proliferation and GC functions 15, and indirectly induces XBP-1 expression by downregulating Pax5 16. The role of XBP-1 is to enhance the secretory capacity of plasma cells 17. The

transcription factor interferon regulatory Cediranib (AZD2171) factor 4 (IRF-4), functioning upstream of XBP-1, is also required for plasma cell differentiation and an important role for IRF-4 is to repress BCL6 18, 19. Bone morphogenetic proteins (BMPs) are members of the TGF-β superfamily, and mediate their effects by binding to a hetero-oligomeric complex of type I and type II serine-threonine kinase receptors. In humans, three BMP type I receptors and three BMP type II receptors have been identified 20. When BMPs bind to the receptors, the type II receptor phosphorylates the type I receptor, which subsequently phosphorylates the receptor-regulated Smads: Smad1, Smad5 and Smad8. Together with Smad4, Smad1/5/8 form a complex which translocates to the nucleus and induces transcription of BMP target genes including the DNA-binding protein inhibitors (IDs) ID-1, ID-2 and ID-3 20, 21.

Mice primed with influenza virus and then challenged by injection

Mice primed with influenza virus and then challenged by injection of a neurotropic strain of the virus into a cerebral ventricle showed massive recruitment of memory T cells into the brain which rescued the animals from fatal encephalitis 16. Strikingly, the numbers of activated, influenza-specific CD8+ T cells

within the brain remained elevated for a year in the absence of clear evidence of persisting influenza antigen. Given the known isolation of the CNS from the recirculating pool lymphocytes, this finding suggested the long-term residence of memory T cells at this site. In a simple but informative experiment, Klonowski et al. 17 joined the circulation of pairs of congenically marked mice by parabiosis to examine the dynamics of memory T-cell trafficking. They reported that while memory cells

in most tissues and selleck inhibitor organs equilibrated with kinetics similar to the mixing of the bloodstreams, memory CD8+ T cells in the brain and intestinal mucosa of partner mice did not equilibrate. Further evidence that memory CD8+ T cells in the CNS are separated from the recirculating memory pools was presented by Wei et al. 18, who showed that peptide injection could not delete memory T cells in the brain although memory cells in all other tissues were deleted. Intranasal infection with vesicular stomatitis virus (VSV)

LDE225 datasheet not only results in respiratory tract infection, but also allows the virus to spread to the brain via the olfactory nasal epithelium and its connection to the olfactory bulb 19. Following infection via the nares, we observed “hot spots” of VSV infection throughout the brain early after infection 20. Virus-specific CD8+ T cells flooded into the brain after being activated in peripheral lymphoid organs, swarmed around the VSV-infected hot spots and cleared the infection Exoribonuclease by 8 days. Numbers of CD8+ T cells in the brain plunged thereafter but a fraction remained in the brain for months and these resident lymphocytes were grouped into clusters in the brain parenchyma, presumably at the previous hot spots of infection. These memory CD8+ T cells did not mix with the circulation, and were unique in their high expression of CD103 and low level expression of CD122. Upregulation of CD103 was absolutely dependent on the T cells interacting with their antigen in the brain. On-site recognition of viral antigen and CD103 expression determined, to a great extent, the number of virus-specific memory cells that remained in the CNS. In these experiments, viral antigen or viral genomic RNA could not be detected in the CNS memory T-cell clusters.

Overactivity of NK cells is not limited to cytotoxic function, wh

Overactivity of NK cells is not limited to cytotoxic function, whereas the increased IL-2-induced secretion of IFN-γ and TNF-α

from NK cells have also been reported in AD patients [34–36]. However, serum levels of IFN-γ and TNF-α were similar in AD patients and normal subjects [35, 36]. In contrast to cytokine release in NK cells, it has been shown that vascular endothelial growth factor (VEGF) secretion in AD patients was significantly decreased in AD patients compared to healthy individuals [37]. In addition to these reports that imply dysregulation of NK cells function, it is demonstrated that NK cells sensitivity to apoptosis is increased in AD patients and correlated with Bcl-2 anti-apoptotic expression [38]. However, it should be noted that there is a possibility that the involvement of NK cell in AD is not a defensive reaction, but it could be a result of progression of AD, which leads to the activation of immune system [39–41]. To approve this hypothesis, we should perform a long-time cohort study in which NK cell frequency and function has been considered in different times and in different stages of disease, particularly in the patients with stable disease that their disease shift to progressive phase. It is also suggested

that abnormalities in NK cells may lead to autoimmune diseases [42]. Thus, it may be possible that NK cell dysfunction has been BMN 673 ic50 supposed as an aetiological factor in AD patients. However, to prove this hypothesis, we should investigate in this field for a long-time on a large sample size. As both neuroprotective [43, 44] and neurodegenerative [45] effects of NK cells on neuron cells have been reported, it seems that understanding the precise role of NK cells in immunopathogenesis of AD needs to performance

of several in vivo studies on experimental models. However, it should be noted that study of NK cells in vivo is difficult which is in part due to the lack of mouse strains with selective NK cell deficiency. Surprisingly, in a limited number of studies with NK cell depletion in MS experimental models, it has been shown that NK cells are protective cells which inhibit autoreactive response of TH1 cell [46, 47]. Contrary to these reports, there is evidence that implies NK cells facilitate Venetoclax experimental MS induction [48, 49] so that NK cells were accumulated in the CNS of experimental autoimmune encephalomyelitis (EAE)-induced Lewis rats at the peak of disease. Moreover, antibody-mediated depletion of NK cells exacerbates disease after priming encephalitogenic T cells and enhances IFN-γ secreting TH1 cells [21]. The regulatory role of NK cells on TH1 responses in EAE not only in CNS but also in periphery is also demonstrated [50]. Interestingly, the studies on MS patients have shown that the frequency and function of NK cells are deficient [51], which are similar to AD reports.

7f) In the present study, we screened 85 strains for their abili

7f). In the present study, we screened 85 strains for their ability to induce the in vitro production of IL-12, and L. paracasei MoLac-1 exhibited the highest

ability. In vitro studies using murine splenocytes demonstrated that heat-killed MoLac-1 cells induced the production of IFN-γ by NK cells via stimulation of IL-12 secreted from CD11b+ cells that were probably macrophages (Figs 2-5). Oral administration of heat-killed MoLac-1 increased the proportion of NK cells in spleen Fulvestrant chemical structure (Fig. 6), and ameliorated the symptoms of IFV infection in mice (Fig. 7). The cytokine response of immunocompetent cells to LAB has been reported to be strain dependent (Fujiwara et al., 2004; Medina et al., 2007; Van Hemert et al., 2010). In the NVP-LDE225 research buy present study, more diverse intraspecific distributions of the ability to induce IL-12 were found in L. paracasei, Lactobacillus plantarum,

Lactococcus species, and Streptococcus species than in the other species (Fig. 1). The cell wall of LAB comprises a complex mixture of glycolipids, lipoproteins, and phosphorylated polysaccharides embedded in a thick layer of peptidoglycan (Zeuthen et al., 2008), and it has been suggested that their cell wall structure is involved in their ability to induce IL-12 (Shida et al., 2006b, 2009). These microbial structure characteristics might contribute to the difference of the abilities of strains to induce IL-12. Some studies have reported that IL-12 secretion by LAB stimulation C-X-C chemokine receptor type 7 (CXCR-7) was responsible for IFN-γ production (Shida et al., 2006a; Takeda et al., 2006; Koizumi et al., 2008). In the present experiments, IL-12 and IL-18 were suggested to be involved in the IFN-γ production induced by heat-killed MoLac-1 (Fig. 5), although IL-18 was not detected in the supernatants

in which splenocytes were cultured with MoLac-1 for 2 days (data not shown). It has been reported that NK cells produce large amounts of IFN-γ and that they were activated by high levels of cytotoxicity in response to the combination of IL-12 and IL-18 (Lauwerys et al., 2000). Additionally, it has been reported that human dendritic cells produce IL-18 upon LAB stimulation (Mohamadzadeh et al., 2005). IL-18 at undetectable levels might affect the IFN-γ production induced by heat-killed MoLac-1. It has been reported that some strains of LAB induce IL-12 production by macrophages, monocytes, and dendritic cells and IFN-γ production by NK cells and T cells (Fujiwara et al., 2004; Shida et al., 2006a; Koizumi et al., 2008). In this study, IL-12 production induced by MoLac-1 was diminished CD11b− cells (Fig. 3). CD11b is expressed on various cell populations such as macrophages/monocytes, granulocytes (Ly-6G+), NK cells (DX5+), and subsets of dendritic cells (CD11c+). As Ly-6G− cells, DX5− cells, and CD11c− cells could produce IL-12 induced by MoLac-1, macrophages were considered to be a major source of MoLac-1-induced IL-12 secretion. Furthermore, IFN-γ was mainly produced by activated NK cells (Fig.

This leads us to speculate that with tools of the appropriate sen

This leads us to speculate that with tools of the appropriate sensitivity,

one should be able to find a large number of autoreactive T cells, even in a normal repertoire, maintained in a tolerant state by nondeletional mechanisms. Mice from the NIAID contract facility (Taconic Farms, Germantown, NY, USA) were housed pathogen free. B10.A CD45.2 mice were also crossed to B6,CD45.1 mice to generate a B10.A,CD45.1 strain [20]. To generate B10.A, mPCC(tg),CD45.1 mice, B10.A mPCC-transgenic, CD45.2 mice [19] were bred to B10.A,CD45.1. The IEk restricted MCC (Moth Cytochrome C)/PCC specific TCR transgenic 5C.C7 mice on Rag2−/−, CD45.1+/+, and CD45.2+/+ backgrounds have been previously described [5]. A1(M) mice originally from Steve Cobbold selleck [21] on a CBA/Ca background were backcrossed 11 times onto a B10.A,Rag2−/− background [14] and maintained by homozygous breeding. All animal protocols were as approved by the NIAID animal care and use committee. For adoptive cell transfers, cell suspensions from pooled lymph nodes of donor TCR-Tg Rag2−/− mice (>90% CD4+ T cells) were used without further enrichment and injected by the suborbital route. Acute antigen challenges were performed by intraperitoneal

injections of 30 μg of antigenic peptide (DbY or PCC; Anaspec or Bachem, USA) mixed with 5 μg of LPS (Sigma, MI, USA). T cells in transfer recipients were enumerated by isolating all lymph nodes and spleen, chopping them to approximately 1 mm cubes and digesting buy RG-7388 with 2 mg/mL collagenase-D (Roche, USA) solution containing 3 mM CaCl2 in 1× PBS, at 37°C for 45 min. Digested tissue was dissociated using gentleMACS dissociator and gentleMACS dissociator C tubes (Miltenyi biotec, Germany) with manufacturer’s programmed settings m_Spleen 2.01 followed by m_Spleen 3.02 run serially on each sample. A total of Dynein 500 μL aliquots of the single cell suspensions were stained to obtain the percentage of CD4+ T cells and used to calculate the number of CD4+ T cells in each animal without any further manipulation. However, in order to track exceedingly low numbers

of transferred T cells, further enrichment was necessary. Following absolute counts, as stated above, as remaining cells were washed and centrifuged over Ficoll-Paque PLUS (GE Healthcare Bioscience) followed by enrichment for T cells by negative selection. Briefly, a cocktail of mouse and rat antibodies to B220 (RA3-6B2), CD11b (M1/770), I-EK (14.4.4s), CD8 (53-6.7), and MHC II (M5.114) (BD Bioscience) were used to label the cells and the bound fraction, pulled out using anti-mouse IgG and anti-rat IgG coated Dynabeads (Dynal Invitrogen). T cells were analyzed on a FACS Canto II cytometer (BD Immunocytometry) after staining with appropriate fluorophore coupled antibodies (Biolegend, Ebioscience or BD). We thank Eleanore Chuang for assistance with experiments, and Pascal Chappert for discussions. This research was supported by the Intramural Research Program of the NIH, NIAID.

Furthermore, AnnexinV stainings of splenic B cells one day after

Furthermore, AnnexinV stainings of splenic B cells one day after setting up the in vitro cultures revealed that in contrast to pre-B cells, B cells did not respond to overexpression of Pim1 by increased survival (Fig. 5E). We conclude that overexpression of Pim1 and Myc does not induce ex vivo isolated splenic or peritoneal CD19+ sIgM+ immature or mature B cells to long-term polyclonal proliferation, or selective survival and extended proliferation in the

absence or presence of polyclonal B-cell stimulators. Our experiments presented in this paper describe the effect of the inducible learn more single or double overexpression of the proto-oncogenes Pim1 and Myc in mouse B-lymphocytes at different stages of development, starting at the DJH/DJH-rearranged pre-BI cell stage 1. Many experiments studying the effect of proto-oncogenes on hematopoietic cells have been done using transgenic mice, also in the case of Pim1 and Myc 18. These mice express the transgenes under the control of the μ enhancer of the immunoglobulin heavy chain (Eμ), which is expressed already at a very early stage of B-cell development. The limitation of such transgenic mice is that if the team play

of the transgenic proto-oncogenes leads to a block in differentiation at an early stage of cell differentiation (as it is the case in these Eμ Pim1/Myc transgenic mice), it is not possible to study effects of the proto-oncogenes on later differentiation stages of the cells using these mice. To circumvent this, we used Selleckchem BAY 80-6946 an inducible system to overexpress the two proto-oncogenes, which allowed us to evaluate the effect of proto-oncogene overexpression at different stages of maturation. In the experiments presented here, we have used retroviral vectors to overexpress the proto-oncogenes in B-lymphocytes under the control of a doxycycline-inducible promoter. Retroviral vectors are known to induce transformations by themselves by activating surrounding host genes with their LTR promoters and enhancers. Hence,

we used self-inactivating vectors. It can be expected that three subsequent transductions, performed with the pre-BI cells, have generated a genetically heterogenous collection of transduced cells with differential inducibility of Pim1 and Myc. As one example, such transgenetic heterogeneity might well be the reason why only a fraction of the Pim1/Myc-double-transduced Edoxaban pre-BI cells initiate proliferation upon proto-oncogene induction, probably either due to inactivation of a transgene or inappropriate overexpression levels of the transgene(s). In spite of these disadvantages, the results of our experiments show that retroviral vectors allow the rapid testing of different combinations of proto-oncogenes in our pre-BI cell lines and their differentiated descendants. Our cell cycle analyses with the Myc-single- and the Pim1/Myc-double-overexpressing pre-B cells show an increase of the frequency of cells in cell cycle.

The clinical manifestation of FHL in humans is often linked to vi

The clinical manifestation of FHL in humans is often linked to viral infections [[21, 22]] and the clinical severity and age of disease onset correlate with the degree to which perforin function is impaired [[20, 23-25]]. The number of memory CD8+ T cells generated by infection or vaccination correlates strongly with the degree of protection observed. Thus, effective vaccination strategies aim to increase the number of protective memory CD8+ T cells. Since perforin is a critical cytotoxic CD8+ T-cell effector molecule, perforin deficiency results in immunocompromised

state in the host. However, in some models of infection (i.e. Listeria monocytogenes (LM) infection), immunity can be restored by increasing memory CD8+ T-cell numbers even in the absence of perforin [[26]]. Thus, PKO hosts should theoretically benefit

from vaccination to increase memory Tofacitinib CD8+ T-cell responses. PKO mice fail to clear primary LCMV infection [[9, 11]]. However, in contrast to improved immunity against LM by vaccination [[27]], we showed that vaccination of PKO BALB/c mice with attenuated recombinant LM expressing the dominant LCMV NP118-126 epitope resulted in massive LCMV-specific CD8+ T-cell expansion, dysregulated production CD8+ T-cell-derived IFN-γ, and increased mortality following LCMV challenge [[16]]. Thus, while vaccination generally enhances antimicrobial immunity, it selleck compound can also evoke lethal immunopathology Temozolomide or exacerbate the disease. Several experimental

animal models demonstrated that vaccination to increase pathogen-specific memory CD8+ T cells can provide enhanced resistance against pathogen challenge in immunocompromised hosts. For example, PKO mice and IFN-γ- and TNF-deficient mice vaccinated with attenuated LM were better protected against virulent LM challenge in a CD8+ T-cell-dependent manner [[27-30]]. However, robust memory CD8+ T-cell recall responses to pathogen challenge could also lead to severe immunopathology and mortality. C57BL/6 mice vaccinated with recombinant Vaccinia virus expressing LCMV proteins succumbed to fatal meningitis after intracranial infection with a normally nonlethal dose of LCMV [[31]]. Similarly, we showed that BALB/c-PKO mice that were vaccinated with attenuated LM expressing the dominant LCMV epitope (NP118-126; H-2Ld restricted) succumbed to LCMV infection despite massive expansion of CD8+ T cells [[16]]. In contrast, PKO mice immunized with control attenuated LM survived the LCMV infection [[16]]. In this case, the presence of NP118-specific memory CD8+ T cells in PKO hosts converts a nonlethal viral infection into a devastating disease. However, it is unclear whether the vaccine-induced mortality in PKO mice is a unique consequence of Listeria-based vaccination.

If DCs were the primary APC for priming naïve Th cells in EAE, an

If DCs were the primary APC for priming naïve Th cells in EAE, an increased naïve Th-cell compartment after DC depletion would be expected. Thus, our data argues for that another cell type is the primary APC for priming naïve Th cells to become autoimmune. Differentiation of Th17 or Th1 cells was also not affected by the DC depletion. Since we have previously shown that pDCs regulate the Th17 response toward MOG in EAE [13], we tested whether pDCs were also depleted in CD11c-DTR and bone marrow chimeras after DTx treatment. Two different flow cytometry methods clearly showed that pDCs were not depleted by the DTx injection.

To further examine the role of DCs on Th differentiation, DC maturation and Treg-cell responses were studied. DC maturation 10 days after MOG immunization was not impaired after DC ablation a day before EAE induction. We have Ulixertinib mouse previously shown that IL-6 and IL-23p40 expression is upregulated in mDCs by a MyD88-dependent mechanism in EAE [12]. Another possiblity was that Treg cells were affected by the DC depletion and subsequently ameliorated the EAE severity. The number of Treg cells in the spleen was however not affected by the DC depletion. Adriamycin order After constituitive ablation of DCs, Treg-cell numbers

are reduced [9, 10]. The difference between our data and their systems is probably caused by the short ablation period and the fact that thymic selection prior to DTx injection is most likely not affected in our system. Others have clearly demonstrated that DCs reactivate primed encephalitogenic Th cells in the CNS during development of EAE [19]. In their system, the myelin-reactive Th cells were however transferred to the mice after priming. In an EAE model of epitope spreading, naïve Th cells reactive to proteolipid protein139–151 were primed probably by DCs in the CNS [20]. An ongoing myelin-reactive Th-cell response was required for epitope spreading to occur. The infiltration of DCs into the CNS was not affected in our transient

system, and we focused on priming and de novo differentiation of naïve Th cells to become myelin-reactive, where DCs appear to have no major role Inositol monophosphatase 1 or are redundant. A reduced or an abolished CD11c expression on DCs during the development of EAE could have rendered the CD11c-DTR mice and bone marrow chimeras resistant to the DC depletion and skewed our results. We have however previously observed similar numbers of CD11chi MHC II+ mDCs in the spleen during sorting of mDC at 4 and 10 days after MOG immunization and in unimmunized mice [14] (A. Lobell, unpublished observations). It is therefore unlikely that reduced CD11c expression explains the observed phenotype. Unexpectedly, transient ablation of DCs before or after EAE induction does not affect priming of Th cells or de novo differentiation of autoimmune, MOG-induced Th17 and Th1-cell responses.