The internal resistance was investigated by EIS The impedance sp

The internal resistance was investigated by EIS. The impedance spectra of the cells prepared Selleck PF2341066 using various amounts of nanorods sintered at 850°C are presented in Figure 2. The semicircles are related to the electron transfer resistance and the tendency

of recombination at the TiO2/electrolyte interface [21]. The arc decreased with increasing amount of nanorods until 7 wt.% and then increased. The 1-D nanorods improved the charge transport and decreased electron recombination by providing fast moving paths for electrons. Although 1-D nanostructured nanorods have been proven to deliver a higher short-circuit photocurrent density (J sc) than TiO2 nanoparticles, too many large rutile nanorods could become a barrier for the electrons due to the higher energy level of the rutile phase. Figure 2 Impedance spectra of the cells with the rutile nanorods. Figures 3 and 4 show the electron diffusion coefficients (D n) and lifetimes (τ r) of the rutile TiO2

nanorods as a function of J sc. The D n and τ r values were determined by the photocurrent and photovoltage transients induced by a stepwise SYN-117 cell line change in the laser light intensity controlled with a function generator. The trends of diffusion coefficients by TiO2 structures are known to be reasonably consistent selleck products with the resistances in the TiO2 film determined by EIS [22, 23]. In Figure 3, all the DSSCs with 1-D rutile nanorods have a higher J sc than the 0 wt.% TiO2 electrode. Table 1 shows that the diffusion coefficients of the electrode with the 1-D rutile nanorods are higher than those of the electrode without the nanorods. However, the value of the diffusion however coefficient at the electrode with 15 wt.% nanorods decreased due to the higher energy level of the rutile phase

in the nanorods. In Figure 4, the J sc of the electrode with the 1-D nanorods is also increased. The lifetime of the electrodes with rutile nanorods is relatively similar to the 0 wt.% electrode at 3, 5, and 15 wt.% and higher at 7 and 10 wt.%. The 1-D nanorods with the increased τ r values can provide an electron pathway. The improved diffusion coefficient and the provided electron pathway result in a synergistic effect that increases the J sc. Figure 3 Electron diffusion coefficients ( D n ) for the DSSCs with the 1-D rutile nanorods. Figure 4 Electron lifetimes ( τ r ) for the DSSCs with the 1-D rutile nanorods. Table 1 Diffusion coefficients and lifetime values of the DSSCs with 1-D rutile nanorods at 1-V light intensity   0 wt.% 3 wt.% 5 wt.% 7 wt.% 10 wt.% 15 wt.% Diffusion coefficient (cm2 s−1) 2.40E−05 3.03E−05 2.89E−05 2.76E−05 2.63E−05 1.99E−05 Lifetime (τ r) (ms) 70.9 70.9 70.9 75.5 75.5 70.9 Table 2 shows the performances of the DSSCs with the 1-D structured rutile nanorods. The J sc value increased with increasing amount of nanorods until 10 wt.% and then decreased at 15 wt.%. The conversion efficiency of the cells using the rutile-phase nanorods was improved depending on the amount of nanorods.

Comments are closed.