The molecular cues controlling essential functions check details within the neurogenesis pathway such as proliferation, short and long distance migration, differentiation and functional integration are poorly understood. Neural progenitors in situ express the tissue nonspecific form of alkaline phosphatase (TNAP), a cell surface-located nonspecific phosphomonoesterase capable of hydrolyzing extracellular nucleotides. To gain insight into the functional role of TNAP in cultured multipotent neural stem cells we applied a knockdown protocol using
RNA interference with shRNA and retroviral infection. We show that TNAP knockdown reduces cell proliferation and differentiation into neurons or oligodendrocytes. This effect is abrogated by addition of alkaline phosphatase to the culture medium. Our results suggest that TNAP is essential for NSC proliferation and differentiation in vitro and possibly also in vivo. (C) 2010 Elsevier Ireland Ltd. All rights reserved.”
“Neuronal interleukin 16 (NIL-16) is the larger neural-specific splice variant of the interleukin-16 (IL16) gene and shows restricted expression to post-mitotic neurons of the mammalian hippocampus and cerebellum. Although the N-terminus of NIL-16 is unique to the neuronal SU5402 cell line variant, the C-terminus is identical to pro-IL-16, the IL-16 precursor expressed primarily in T-cells. IL-16 was originally described as a proinflammatory
cytokine and has diverse immunoregulatory effects which involve signaling through CD4. NIL-16-expressing neurons can secrete IL-16 and may express CD4; moreover, treatment of cultured cerebellar granule neurons (CGCs) with IL-16 increases the expression of c-Fos, an immediate-early gene which transcriptionally regulates genes directing survival, proliferation, and growth. Taken together, we hypothesize that IL-16 functions as a neuroregulatory cytokine which signals through neuronal CD4 receptors. In this study, we investigated the role of CD4 in IL-16-induced
c-Fos expression in CGCs, as well as the effects of IL-16 on neuronal survival and growth. We detected components involved in IL-16-signaling in lymphocytes, including CD4 and Astemizole the associated tyrosine kinase p56(lck), in CGCs using qRT-PCR and immunoblotting. We also show that IL-16 induces c-Fos expression in wild-type CGCs, but not CD4-deficient CGCs or following inhibition of p56(lck). Finally, treatment of CGCs with IL-16 enhanced neurite outgrowth, an effect also observed in CD4-deficient CGCs. Taken together, our results indicate that IL-16-signaling affects neuronal gene expression and growth through CD4-dependent and independent pathways. (C) 2010 Elsevier Ireland Ltd. All rights reserved.”
“Recent work has demonstrated that postural instability evokes an electrodermal response (EDR) that is temporally coupled to perturbation onset.