These findings support the importance of optimizing surgical techniques to achieve a sound oncological surgical outcome with negative surgical margins when possible.”
“Methamphetamine is a drug of abuse that can induce oxidative stress and neurotoxicity
to dopaminergic neurons. We have previously reported that oxidative stress promotes the liberation of intracellular Zn(2+) from metal-binding proteins, which, in turn, can initiate neuronal injurious signaling processes. Here, we report that methamphetamine mobilizes Zn(2+) in catecholaminergic rat pheochromocytoma (PC12) cells, as measured by an increase in Zn(2+)-regulated gene expression driven by the metal response element transcription factor-1. Moreover, methamphetamine-liberated selleck Zn(2+) was responsible for a pronounced enhancement in voltage-dependent K(+) currents in these cells, a process that normally accompanies Zn(2+)-dependent cell injury. Overnight exposure to methamphetamine induced PC12 cell death. This toxicity could be prevented by the cell-permeant zinc chelator N,N,N’, N’-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN), and by over-expression of the Zn(2+)-binding protein metallothionein
3 (MT3), but not by tricine, an extracellular Zn(2+) Tideglusib ic50 chelator. The toxicity of methamphetamine to PC12 cells was enhanced by the presence of co-cultured microglia. Remarkably, under these conditions, TPEN no longer protected but, in fact, dramatically exacerbated Erythromycin methamphetamine toxicity, tricine again being without effect. Over-expression of MT3 in PC12 cells did not mimic these toxicity-enhancing actions of TPEN, suggesting that the chelator affected microglial function. Interestingly, P2X receptor antagonists
reversed the toxicity-enhancing effect of TPEN. As such, endogenous levels of intracellular Zn(2+) may normally interfere with the activation of P2X channels in microglia. We conclude that Zn(2+) plays a significant but complex role in modulating the cellular response of PC12 cells to methamphetamine exposure in both the absence and presence of microglia. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“Purpose: This phase I study of high dose ketoconazole and docetaxel was designed against castration resistant prostate cancer to determine the maximum tolerated doses, side effects, and pharmacokinetic interaction of co-administered docetaxel and ketoconazole.
Materials and Methods: Patients with metastatic castration resistant prostate cancer received weekly docetaxel for 3 of every 4 weeks plus daily ketoconazole. Pharmacokinetic studies were performed on day 1 (docetaxel alone) and day 16 (after ketoconazole).
Results: The study enrolled 42 patients at 9 different dose levels. The combination regimens investigated included docetaxel weekly, increasing from 5 to 43 mg/m(2), with starting doses of 600, 800 or 1,200 mg ketoconazole daily.