1,2 Hypertension, endocrine abnormalities such as insulin resistance, and psychosocial complications are also implicated with sleep disorders.3–6 Treatment of SA has been shown to improve hypertension, cognitive function and glucose control.7–9 Hypertension is closely linked with SA and may mediate the association between SA and kidney disease. The NVP-LDE225 Institute of Medicine estimates that 60 million people in the USA have sleep disorders, of which SA is a significant component.10 The Seventh Report of
the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure recommends consideration SA in patients with hypertension.11 Because sleep disorders may present with non-specific complaints, many physicians may fail to recognize SA. Polysomnography with sleep study has been the gold standard for diagnosing SA. The degree of severity, type (central vs obstructive) and response to positive airway pressure can be assessed with polysomnography. With the exception of interventional techniques such as surgery or tracheotomy,
treatment with positive airway devices is generally considered the standard of care. A high prevalence of SA has been demonstrated in dialysis patients12,13 compared with the 2–4% estimated in the general population.14 MLN0128 in vitro The uremic milieu is the likely mechanism responsible for SA. However, the association between SA and CKD extends beyond the ESRD population. SA appears to be more prevalent with early click here CKD, proteinuria and even renal transplantation. This review examines the prevalence of SA in patients with CKD, including patients with early-stage CKD, proteinuria, ESRD and those who have received renal transplants.
SA may be vary in form and aetiology within the different stages of CKD. Aside from established practices and guidelines for SA, we discuss our rationale for screening recommendations and management of SA with specific regard to the CKD population. The high prevalence of SA in the ESRD population is well described (see Table 1).12,13,15–24 Previous studies using polysomnography (e.g. sleep studies) or profiling of ESRD patients with sleep habit questionnaires (e.g. Berlin questionnaire25) demonstrated a high rate of sleep disturbances in this population.12,26 Compared with the general population where the prevalence of SA is estimated to be 2–4%, prevalence in the ESRD populations appears to be 30% or more.13,14 SA was diagnosed in up to 70% of selected patients who were assessed with polysomnography.17 In an attempt at direct comparison between haemodialysis (HD) patients and non-CKD patients, Unruh et al.24 performed polysomnography on 46 HD patients and 137 controls matched for age, gender, body mass and race who were participants in the Sleep Heart Health Study.27 The study demonstrated a 4.07 (95% confidence interval 1.83–9.07) odds ratio for sleep-disordered breathing in the HD patients compared with subjects without CKD.