38 However, this model produced steatosis and inflammation, but not fibrosis. In fact, the current study demonstrated
that chimeric mice with NOX-deficient HSCs but WT KCs had the greatest reduction in liver fibrosis. The possibility of creating a selective inhibition of the nonphagocytic form of NOX39-41 without the involvement of the phagocytic form should significantly reduce the fibrogenic pathway without affecting host defense mechanisms related to the functionality of the phagocytic form of NOX.42 NAFLD, the liver manifestation of the metabolic syndrome, may progress to liver fibrosis and cirrhosis.43 Moreover, although the main source of ROS production in both viral and ethanol-induced liver injury appears to result from activation of NOX,44-46 the role PLX3397 of NOX in NAFLD is still unclear. In fact, the main cell types involved in ROS production during NAFLD are perhaps HEPs.47 HEPs express a functional form of NOX that Dabrafenib supplier participates in CD95-induced cell death.21 Our study demonstrates that the development of steatosis, lipid peroxidation, and inflammation caused by an MCD diet
are independent from the p47 subunit of the NOX. This conclusion was supported by data showing the same triglyceride accumulation and ROS in primary cultures of HEPs isolated from p47phox KO and WT mice. In fact, the majority of ROS production in MCD-induced liver injury is derived from hepatocellular lipid deposition and subsequent peroxidation. Other sources of ROS in HEPs are the cytochrome P450s and mitochondrial respiratory chain.48, 49 However, our study revealed that NOX does play a role in the steatosis–inflammation–fibrosis axis in NAFLD, in that NOX-deficient mice express little ROS in HSCs, and develop less fibrosis compared to WT mice on an MCD diet for 10 click here weeks (Fig. 7; Supporting Fig. 2). Thus, NOX was required for ROS generation in HSCs and fibrosis but not steatosis or ROS generation in HEPs in this model of NAFLD. However, because the MCD diet is not as robust in inducing liver fibrosis as BDL or CCl4, we could not perform the same chimeric liver studies to further
identify the key cell types expressing NOX in the NASH model. Another mechanism of fibrogenesis is represented by apoptosis and then phagocytosis of apoptotic bodies.33 Apoptotic bodies may directly or indirectly, through KCs, activate HSCs and promote myofibroblastic transdifferentiation. NOX plays a critical role in the process of phagocytosis in response to apoptotic bodies that are generated during liver injury. Thus, the reduced fibrosis observed in p47phox KO mice may be related to the inhibition of the fibrogenic mechanism induced by apoptotic bodies. In conclusion, our study points to a crucial role of nonphagocytic NOX in liver fibrosis but not steatosis in experimental liver fibrosis including NAFLD. Thus, not all ROS is the same, so that ROS generated by NOX in HSCs is fibrogenic, whereas ROS generated in steatotic hepatocytes is NOX-independent.