Salvaging is commonly used to save at least part of the wood and reduce the probability of the occurrence of other disturbances (Lindenmayer NVP-BSK805 cost et al. 2008). Both legislation and official forest management rules in many countries support salvaging. Unfortunately, the ecological effect of this treatment is still insufficiently explored, especially in the case of less studied groups of organisms (Økland 1994; Grove 2002; Żmihorski and Durska 2011). Moreover, the LY333531 cost picture obtained
from scant research in this area is unclear and depends on a particular taxonomic group, study area etc. As a consequence, it is very difficult to propose a set of appropriate management rules concerning disturbed areas in the context of biodiversity conservation in the forest ecosystem. Nevertheless, this issue needs urgent research as the frequency of disturbances is expected to increase in the future SB202190 manufacturer (Schelhaas et al. 2003). The differences between clear-cutting and salvage-logging are obvious. Clearcutting is associated with intact forest areas; salvaging with disturbed stands. Despite the obvious differences one may expect that the effect of salvage logging is to some extent similar to the effect of clearcutting because both types of harvesting lead to a considerable reduction of the number
of standing trees, a reduction of the amount of dead wood and the creation of open or partially open areas in the forest. Moreover, seedlings of trees are either planted or occur naturally in both clear-cut and salvage-logged areas. The new habitats created after such anthropogenic disturbances are very similar to those created after natural disturbances: both are short-lived and remain suitable for open-area species for several years (Southwood 1962; Travis and Dytham 1999). My studies on Phoridae inhabiting areas after disturbances shows that the disturbed areas are remarkably diverse and species
rich as to this group of insects. Many of these are a major component of the pioneer faunas recolonizing habitats devastated by episodes such as clearcutting, windstorms or forest fires (Durska 1996, 2001, 2003, 2006, 2009; Durska et al. 2010; Morin Hydrate Żmihorski and Durska 2011). The aim of my study was to evaluate the similarities of the scuttle fly communities colonizing forest habitats after anthropogenic and natural disturbances. Scuttle flies, due to their highly diversified life cycles and environmental requirements, as well as relatively high number of species, are considered to be good indicators of habitat quality (Disney 1983a; Disney 1994; Disney and Durska 1998, 2008, 2011). Methods Study area The study is based on material collected in four large forest complexes in northern Poland (Fig. 1): The Białowieża Primeval Forest (BPF) (52o30′–52o50′ N, 23o40′–24o00′ E), the Tuchola Forest (TF) (53o30′–53o50′ N, 18o15′–18o40′ E), the Biała Forest (BF) (52o30′–53o00′ N, 20o40′–21o30′ E) and the Pisz Forest (PF).