Effect of EGFR knockdown on LRIG1-induced cell

Effect of EGFR knockdown on LRIG1-induced cell proliferation and signal pathway regulation To determine whether EGFR expression is critical for the effect of LRIG1 on bladder cancer cells in vitro, we next used specific genetic inhibition of EGFR to assess the consequences of its inhibition on LRIG1 mediated cell proliferation and signal pathway regulation. First, we confirmed that the EGFR siRNA effectively reduced the EGFR

protein level in T24 and 5637 cells (Figure 6A). Then we found EGFR knockdown significantly decreased the effect of LRIG1 cDNA on cell proliferation compared with control-siRNA-transfected cells (Figure 6B). Luminespib clinical trial And EGFR siRNA significantly weakened the effect of LRIG1 cDNA on the EGFR signaling pathway regulation in both cell lines compared with cells transfected with control siRNA

(Figure 6C). Figure 6 Effect of EGFR knockdown on LRIG1-induced cell proliferation and signal pathway regulation. A: Genetic suppression of EGFR by EGFR-siRNA transfection. B: Proliferation of cells treated with LRIG1 cDNA after selleck compound transfection with EGFR siRNA or control siRNA. *P < 0.05 vs cells transfected with control siRNA. C: Effects of silencing EGFR on the LRIG1-induced regulation of the expression of AKT, MAPK, and their phosphorylated forms. Discussion Kekkon proteins negatively regulate the epidermal growth factor receptor (EGFR) during oogenesis in Drosophila. Their structural relative in mammals, LRIG1, is a transmembrane protein, could restrict growth factor signaling by enhancing receptor ubiquitylation Selleckchem Rucaparib and degradation [13]. The feasibility and efficacy of

the inhibitory effects of LRIG1 on tumor through inhibiting EGFR signaling activity have been studied in renal cancer, glioma, squamous cell carcinoma of skin, colorectal cancer and prostate cancer [19–23]. In this study, we attempted to evaluate the inhibitory effects of LRIG1 on aggressive bladder cancer cells. EGFR is a well-studied, versatile signal transducer that is overexpressed in many types of tumour cells, including lung, colon and prostatic carcinoma, and up-regulation of EGFR is associated with poor clinical prognosis [24, 25]. EGFR is a 170 kDa tyrosine kinase receptor consisting of an extracellular ligand-binding domain, a transmembrane lipophilic domain, and an intracellular tyrosine kinase domain and the C-terminus region with Alvocidib supplier multiple tyrosine residues [26]. EGFR mediates signals that stimulate proliferation, migration, and metastasis in many tumour types [25, 27], and its signal transduction is regulated by stimulatory and inhibitory inputs.

Comments are closed.