In addition, Fu XS. et al. and Koukourakis MI. et al. showed that HIF-1a gene polymorphisms, such as rs11549465 and rs11549467, affect its expression [30, 31]. These SNPs seem to be also related with FDG uptake as JIB04 order described by Kim SJ. and co-workers [15]. Hypoxia-inducible factor 2 alpha (HIF-2a), also known as endothelial PAS domain protein 1 (EPAS1), is another member of the hypoxia-inducible factor family and shares many similarities with HIF-1a [32, 33].
However several molecular, biochemical, and physiological studies have established that HIF-1a and HIF-2a are not redundant but have distinct functions [34]. To understand the possible relationship of EPAS1 and the abovementioned HIF-1a SNPs to FDG uptake, we analyzed the only two EPAS1 missense mutations (rs137853037 and rs137853036) with probable pathogenicity as described in the dbSNP Short Genetic Variations database and in the Human Gene Mutation Database
where a collection of known gene lesions responsible for human inherited diseases is found. APEX1, a DNA base excision repair enzyme, has also a role in transcriptional activation of HIF-1 and the hypoxia inducible factor-like factor (HLF). APEX1 polymorphisms have been the object of studies about in several types of cancer including colorectal, breast and non-small cell lung cancer (NSCLC) in order to evaluate their role in cancer susceptibility, development and response to radiotherapy [15, 35]. Interestingly, in selleck products NSCLC patients with the APEX1 rs1130409 TT genotype an association, not fully clarified yet, between the abovementioned rs710218 GLUT1 SNP and FDG uptake was shown [15]. Overall, all previous studies have DMXAA research buy investigated SNPs of a limited number of genes. Furthermore, the type of cancer tissue varies, rendering PJ34 HCl difficult the evaluation of their real impact on FDG PET uptake in specific cancer types. To our knowledge, no studies have examined the simultaneous presence and role of these specific polymorphisms in BC patients. Therefore, the purpose of this
preliminary research was to highlight possible associations between the abovementioned SNPs of the GLUT1, HIF-1a, EPAS1, APEX1 and VEGFA genes and the FDG uptake, in order to identify a large panel of SNPs, for imaging analysis that will allow a more personalized treatment program. Methods Patients Thirty-three caucasian individuals with primary BC were enrolled for a multidisciplinary project named “Tissue characterization in primary BC: correlation with FDG-PET uptake and with choline peak by proton nuclear MR spectroscopy”. Inclusion criteria for genotyping analysis were: patients candidated for surgery of invasive BC with a tumour size of at least 2 cm, as measured by mammography and breast ultrasonography and not treated with primary chemotherapy. Twenty-six BC patients were finally selected for genotyping analysis using the abovementioned inclusion criteria.