Methods After giving informed consent and being cleared for participation by passing a screening physical and EKG, 36 apparently healthy men (mean ± SD age, height, weight: 29.4 ± 7.7 y, 177.2 ± 5.2 cm, 82.2 ± 10.7 kg) consumed GSK2126458 research buy 4 capsules of ProLensis™ (325 mg in the morning, 325 mg six hours later) or a matched placebo every day for 28
days. Clinical chemistry panels (renal, hepatic, and hematological biomarkers) and general markers of health (heart rate, blood pressure, EKG) were assessed before and after 28 days of supplementation. Data were analyzed via ANCOVA using baseline values as the covariate and statistical significance was set a priori at P≤0.05. Results In 27 of 29 variables, no differences were noted between groups. Alkaline phosphatase (AP) increased marginally in the ProLensis™group (+2.0 IU/L, +3%) compared to a parallel decrease the Placebo
group (-2.4 IU/L, -3.8%); P<0.04. In contrast, creatinine (Creat) decreased slightly in the ProLensis™group (-0.08, -7.4%) compared to no change in the Placebo group (P<0.003). It is our opinion that the observed differences in AP and Creat are not clinically relevant given that all values for both groups fell well within normative clinical limits (i.e. typical Selumetinib ic50 values for AP range from 20 to 140 IU/L1; typical values for Creat range from 0.6 to 1.3 mg/dL for men and 0.5 to 1.1 mg/dL for women2). Conclusions
Within the confines of the current experimental design (i.e. subject demographics, dose and duration of use) these preliminary data suggest that ProLensis™is as safe as Placebo with respect to the hemodynamic, hepatic, renal, and hematologic biomarkers assessed. Future studies should seek to clarify extraction methods and bioactive(s), investigate potential efficacy, and confirm these safety data to strengthen the total body of evidence. Acknowledgements Supported in part by a research grant from Sports Nutrition Research, LTD (Franklin Square, NY).”
“Background Body ID-8 composition (BC) and its changes over time may influence performance in soccer players. BC assessment techniques are mainly based on quantitative evaluation, originating from model-based indirect estimates of Fat-Free Mass and Fat Mass. DXA, particularly the advanced iDXA technology, is considered to be precise enough for this kind of assessment. On the other hand, Bio Impedance Vector Analysis (BIVA) allows the direct assessment of athletes’ body composition from impedance vector (Z vector), irrespective of body weight, prediction models or hydration assumptions and may classify qualitative changes in soft tissues hydration.