Pastoriza-Gallego et al. [18, 44] examined the volumetric behaviour and the viscosity of CuO and Al2O3 in water nanofluids. Experimental density measurements of CuO-water nanofluids were performed at the PD-0332991 purchase pressure range from atmospheric pressure to 45 MPa, and the temperature range of 283.15 to 323.15 K, with a 10-K step. In turn, density measurements of Al2O3-water nanofluids were executed at an atmospheric pressure of 25 MPa, and the temperatures Z-VAD-FMK mw of 283.15, 298.15, and 313.15 K. Additionally, the viscosity measurements at atmospheric pressure were carried
out. Cabaleiro et al. [45] also experimentally determined the influence of pressure on the density of TiO2-ethylene glycol nanofluids. It was found that the impact of particle size on density is slight, but it may not be ignored. On the other side, the variations in viscosity are significant thus must be taken into consideration for any practical application. For this reason, examination on the influence of pressure on viscosity of nanofluids may have great Selleckchem Dactolisib practical importance. Electrorheology is a field
of science which studies liquids, whose viscosity changes reversibly and continuously under the influence of an electric field. Therefore, the viscosity of electrorheological fluids changes under the impact of an applied voltage. The electrorheological fluid is a suspension of particles in a base fluid, and for this reason, the simplest explanation for the viscosity increase is to assume that under the influence of an electric field, the particles
connect to each other to form an ordered chain, whose direction is consistent with the direction of the force field. It increases the flow resistance of the liquid phase. Effect of increased viscosity is proportional to the electric field intensity. That phenomenon is reversible – after the resolution of the electric field, the liquid returns to its initial properties. The effect of ‘curing liquid’ under the Orotidine 5′-phosphate decarboxylase influence of an electric field is also called the Winslow effect, after the name of the American inventor Willis Winslow who was the first researcher of this phenomenon, and published an article about it in 1949 [46]. ‘Winslow liquids’ were based on oil, which contained a suspension of starch, lime, gypsum, silicon dioxide, or carbon. The current understanding of the microscopic phenomena is that it is believed to control the electrorheological effects, and the models used to describe macroscopic behavior is presented in the review of Parthasarathy and Klingenberg [47]. Additionally, Hao [48] described the physical backgrounds behind phenomenon of electrorheological fluids. Due to their unique properties, electrorheological liquids are used as working fluids in various types of machinery and vehicles, including active vibration damping devices, shock absorbers, clutches, electrically controlled valves, and in aerospace applications.