The procedure is described as follows Cells were grown in ASSPL

The procedure is described as follows. Cells were grown in ASSPL to early log phase (OD600 nm of 0.15–0.2) and harvested by centrifugation. Harvested cells were washed twice with cold electroporation buffer (10% glycerol+1 mM MgCl2) and centrifuged at 4000 g for 10 min at 4 °C. The cell pellet was resuspended in the same electroporation buffer to 1/50 volume of the original culture. Eighty microliters of this cell suspension was mixed with 2 μg of genomic DNA or PCR amplicon on ice and transferred to a precooled 0.1-cm gap electroporation cuvette (BTX, Harvard Apparatus). The cell–DNA mixture was subjected to electroporation

at field GSK-3 beta pathway strength of 20 kV cm−1, capacitance of 25 μF, and resistance of 200 Ω. Following electroporation, the cells were immediately diluted in 1 mL of THL medium and incubated anaerobically for 16 h at 37 °C then plated on THL agar plates

supplemented with 1 mg mL−1 streptomycin. Colonies would appear after 24–48 h. Using this protocol, we were able to consistently obtain 9–12 colonies μg−1 mutant genomic DNA, which was two to three times higher than the number of colonies from the wild-type DNA (3–5 colonies μg−1 DNA and these colonies are spontaneous mutants). This result suggested that at least half of the streptomycin-resistant colonies obtained using the mutant DNA contained introduced mutations while the rest may have originated from spontaneous mutation. We could not obtain consistent transformation results when using other parameter combinations mentioned in Materials and methods. Volasertib in vitro With the optimized protocol, we next tested whether PCR-generated DNA could be used to transform V. parvula PK1910. PCR amplicons were generated with the primers rpsLup-F and rpsLdn-R (Table 2 and Fig. 1) using the wild-type and the spontaneous streptomycin-resistant strains SR1 (AAG to AAC mutation) and SR2 (AAG to AAT mutation) as templates. The amplicons were named rpsL-WT, rpsL-SR1, and rpsL-SR2, respectively (Fig. 1). The three PCR amplicons were transformed into PK1910 Sclareol with the procedure described above. In five

separate experiments, we obtained similar results as the transformation with genomic DNA: there were always about two times more colonies in the transformation with the mutant DNA than with the wild-type DNA. For one of these experiments, we sequenced the rpsL gene of all the colonies that appeared on the plates. As shown in Table 3, most colonies in the rpsL-SR1 transformation have AAC mutation in codon 43, while most colonies in the rpsL-SR2 transformation have AAT mutation in codon 43. The colonies in rpsL-WT transformation, representing the spontaneous mutation, have a similar distribution of the AAC or AAT mutation in codon 43. This result strongly suggests that DNA-mediated transformation had occurred in V.

The procedure is described as follows Cells were grown in ASSPL

The procedure is described as follows. Cells were grown in ASSPL to early log phase (OD600 nm of 0.15–0.2) and harvested by centrifugation. Harvested cells were washed twice with cold electroporation buffer (10% glycerol+1 mM MgCl2) and centrifuged at 4000 g for 10 min at 4 °C. The cell pellet was resuspended in the same electroporation buffer to 1/50 volume of the original culture. Eighty microliters of this cell suspension was mixed with 2 μg of genomic DNA or PCR amplicon on ice and transferred to a precooled 0.1-cm gap electroporation cuvette (BTX, Harvard Apparatus). The cell–DNA mixture was subjected to electroporation

at field CP-868596 supplier strength of 20 kV cm−1, capacitance of 25 μF, and resistance of 200 Ω. Following electroporation, the cells were immediately diluted in 1 mL of THL medium and incubated anaerobically for 16 h at 37 °C then plated on THL agar plates

supplemented with 1 mg mL−1 streptomycin. Colonies would appear after 24–48 h. Using this protocol, we were able to consistently obtain 9–12 colonies μg−1 mutant genomic DNA, which was two to three times higher than the number of colonies from the wild-type DNA (3–5 colonies μg−1 DNA and these colonies are spontaneous mutants). This result suggested that at least half of the streptomycin-resistant colonies obtained using the mutant DNA contained introduced mutations while the rest may have originated from spontaneous mutation. We could not obtain consistent transformation results when using other parameter combinations mentioned in Materials and methods. Selleck APO866 With the optimized protocol, we next tested whether PCR-generated DNA could be used to transform V. parvula PK1910. PCR amplicons were generated with the primers rpsLup-F and rpsLdn-R (Table 2 and Fig. 1) using the wild-type and the spontaneous streptomycin-resistant strains SR1 (AAG to AAC mutation) and SR2 (AAG to AAT mutation) as templates. The amplicons were named rpsL-WT, rpsL-SR1, and rpsL-SR2, respectively (Fig. 1). The three PCR amplicons were transformed into PK1910 C-X-C chemokine receptor type 7 (CXCR-7) with the procedure described above. In five

separate experiments, we obtained similar results as the transformation with genomic DNA: there were always about two times more colonies in the transformation with the mutant DNA than with the wild-type DNA. For one of these experiments, we sequenced the rpsL gene of all the colonies that appeared on the plates. As shown in Table 3, most colonies in the rpsL-SR1 transformation have AAC mutation in codon 43, while most colonies in the rpsL-SR2 transformation have AAT mutation in codon 43. The colonies in rpsL-WT transformation, representing the spontaneous mutation, have a similar distribution of the AAC or AAT mutation in codon 43. This result strongly suggests that DNA-mediated transformation had occurred in V.

Data were collected regarding availability for use of each source

Data were collected regarding availability for use of each source and allergy status. The GS-PAML was compared to each PAM, and disagreements were identified and categorised. Key findings  click here Data

were collected for 134 patients. Community pharmacy and nursing home staff were most accessible to researchers when undertaking the medication history (>90%), followed by GP staff (66%). Except for nursing home sources, agreement between PAML and GS-PAML was low (2–17% of patients, 44–77% of medications). The community pharmacy PAML most frequently agreed with the GS-PAML (17% of patients, 77% of medications) followed by GP staff (10% of patients, 69% of medications). Previous (within the last 6 months) discharge summaries (3% of patients, 49% of medications) and GP referral letters (2% of patients, 44% medications) agreed least frequently.

Nursing home (100%) Osimertinib datasheet and GP (91%) staff provided most accurate allergy information. Drug omission (>35%) was the most common disagreement for all sources except nursing home staff. GP staff and community pharmacy PAMLs contained a considerable proportion of commission discrepancies. Conclusion  Community pharmacy and GP staff were identified as the most available and accurate sources of PAM information and should be prioritised when undertaking admission medication reconciliation in a busy clinical environment. “
“Clinical pharmacists working in critical-care areas have a beneficial effect on a range of medication-related therapies including 17-DMAG (Alvespimycin) HCl improving

medication safety, patient outcomes and reducing medicines’ expenditure. However, there remains a lack of data on specific factors that affect the reason for and type of interventions made by clinical pharmacists, such as unit speciality. To compare the type of proactive medicines-related interventions made by clinical pharmacists on different critical-care units within the same institution. A retrospective evaluation of proactive clinical pharmacist recommendations, made in three separate critical-care areas. Intervention data were analysed over 18 months (general units) and 2 weeks for the cardiac and neurological units. Assessment of potential patient harm related to the medication interventions were made in the neurological and cardiac units. Overall, 5623, 211 and 156 proactive recommendations were made; on average 2.2, 3.8 and 4.6 per patient from the general, neurological and cardiac units respectively. The recommendations acceptance rate by medical staff was approximately 90% for each unit. The median potential severity of patient harm averted by the interventions were 3.6 (3; 4.2) and 4 (3.2; 4.4) for the neurological and cardiac units (P = 0.059).

Previous human brain imaging studies have revealed multiple corti

Previous human brain imaging studies have revealed multiple cortical and subcortical areas that are activated when decision uncertainty is linked to outcome probability. However, the neural mechanisms of uncertainty modulation in different perceptual decision tasks have not been systematically investigated. Uncertainty of perceptual decision can

originate either from highly ABT-263 manufacturer similar object categories (e.g. tasks based on criterion comparison) or from noise being added to visual stimuli (e.g. tasks based on signal detection). In this study, we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms of task-dependent modulation of uncertainty in the human brain during perceptual judgements.

We observed correlations between uncertainty levels and fMRI activity in a network of areas responsible for performance monitoring and sensory evidence comparison in both tasks. These areas are associated with late stages of perceptual decision, and include the posterior medial frontal cortex, dorsal lateral prefrontal cortex, and intraparietal sulcus. When the modulation of uncertainty on the two tasks was compared, dissociable cortical networks were identified. Uncertainty in the criterion comparison task modulated activity in the left lateral prefrontal cortex Protein kinase N1 related to rule retrieval.

In the signal detection task, uncertainty modulated activity in higher see more visual processing areas thought to be sensory information ‘accumulators’ that are active during early stages of perceptual decision. These findings offer insights into the mechanism of information processing during perceptual decision-making. “
“Specific motor symptoms of Parkinson’s disease (PD) can be treated effectively with direct electrical stimulation of deep nuclei in the brain. However, this is an invasive procedure, and the fraction of eligible patients is rather low according to currently used criteria. Spinal cord stimulation (SCS), a minimally invasive method, has more recently been proposed as a therapeutic approach to alleviate PD akinesia, in light of its proven ability to rescue locomotion in rodent models of PD. The mechanisms accounting for this effect are unknown but, from accumulated experience with the use of SCS in the management of chronic pain, it is known that the pathways most probably activated by SCS are the superficial fibers of the dorsal columns. We suggest that the prokinetic effect of SCS results from direct activation of ascending pathways reaching thalamic nuclei and the cerebral cortex. The afferent stimulation may, in addition, activate brainstem nuclei, contributing to the initiation of locomotion.

4% NaCl, 21% MgSO4·7H2O, 18% MgCl2·6H2O, 042% KCl, 0056% CaCl

4% NaCl, 2.1% MgSO4·7H2O, 1.8% MgCl2·6H2O, 0.42% KCl, 0.056% CaCl2, and 12 mM Tris-HCl, pH 7.5). Solid media were prepared by the addition of 1.5% agar (Difco). If required, novobiocin was added at 0.3 μg mL−1. Escherichia coli was routinely grown in Luria–Bertani medium (0.5% yeast

extract, 1% peptone, 1% NaCl); if required, 100 μg mL−1 ampicillin was added. For the construction of plasmids, E. coli JM109 (F′traD36 proA+B+ lacIqΔ(lacZ)M15/Δ(lac-proAB) glnV44 selleck products e14− gyrA96 recA1 relA1 endA1 thi hsdR17) was used. To prepare unmethylated DNA for efficient transformation of H. volcanii, E. coli ER2925 (New England Biolabs, Hitchin, UK) was used. Transformation of E. coli (Sambrook & Russel, 2001) and H. volcanii (Cline et al., 1989) was performed as described. General DNA techniques were performed as described (Sambrook & Russel, 2001). AmyH was produced Romidepsin chemical structure in H. volcanii by transforming this strain with the plasmid pSY-AmyH, which has been described before (Kwan et al., 2008). All mutations in the signal-peptide encoding region of the amyH gene were carried out using the Quickchange mutagenesis system (Stratagene, La Jolla, CA). To visualize AmyH secretion on plates, 0.5% starch was added to YPC-agar. After 2 days of growth, starch-YPC plates were stained for 30 s with iodine solution (2% KI, 0.2% I2). Proteins were separated by sodium dodecyl sulphate polyacrylamide gel

electrophoresis (SDS-PAGE) and immunoblotted onto polyvinylidene difluoride membranes (Millipore, Watford, UK) using a semi-dry system. Amylase was visualized with specific antibodies and horseradish peroxidase anti-rabbit IgG conjugates (Promega, Southampton, UK), using the Pico West detection system (Perbio Science, Cramlington, UK). Proteomes from E. coli K-12 MG1655, Haloarcula marismortui ATCC 43049, Natromonas pharaonis DSM2160, and Halobacterium salinarum NRC1 were obtained through the European Bioinformatics Institute (http://www.ebi.ac.uk/genomes). Proteomes were analysed firstly with tatfind 1.4 at http://signalfind.org/tatfind.html (Dilks et al., 2003). To avoid false-positives, two additional steps were adopted. Firstly, very few (if any) Tat substrates

are polytopic integral membrane proteins, and proteins showing one or more additional membrane-spanning domains (using TMHMM at http://www.cbs.dtu.dk/services/TMHMM/) were therefore removed from GPX6 the dataset. Secondly, proteins in the dataset were analysed for signal peptides using the Hidden Markov model of signalp 3.0 (Bendtsen et al., 2004; http://www.cbs.dtu.dk/services/SignalP/). Any proteins below the threshold score of 0.5 were also removed. For archaea, it is not clear whether the Gram-negative or the Gram-positive model is better; for this reason, both were tested and proteins scoring below the threshold in either model were removed. The final datasets contained 24 Tat substrates for E. coli, 94 for H. marismortui, 41 for H. salinarum, and 74 for N. pharaonis.

The authors state that they have no conflict of interest to decla

The authors state that they have no conflict of interest to declare.


“The points raised by Caumes and Vidailhet concerning our case report of neuroschistomiasis are very pertinent. Regarding diagnosis, the attribution of the brain pathology to acute disseminated encephalomyelitis (ADEM) was very much an operational designation. Although the two patients presented with some criteria of ADEM according to Krupp and colleagues,1 other features are atypical or not relevant for ADEM, such as the absence of cerebrospinal fluid markers Dasatinib molecular weight of inflammation, the too close temporal association between the signs of acute schistosomiasis, and the onset of encephalopathy as well as the magnetic resonance imaging (MRI) aspects. Indeed, it is clear from the numerous small linear hyperintense lesions that can be observed on the gadolinium-enhanced T1-weighted MRI images that an inflammatory vascular process is prominent and, as we stated in the discussion of our article, these images are indeed more characteristic of cerebral vasculitis. In addition, as pointed out recently by Lassmann,2 pathology

is the gold standard for the diagnosis of ADEM, and this type of information was missing. Therefore, because it is highly probable that the neurological signs were due to the eosinophil involvement Ipilimumab mw related to acute schistosomiasis, it may be clearer and more neutral to refer to this case etiologically as one of acute schistosomal encephalopathy. However, the main goal of our article was to illustrate the risk of neurological complications in young people with schistosomal infections, and to emphasize the

need to detect and treat these patients in a timely and appropriate manner. In this respect, we concur entirely with Caumes and colleagues very that the encephalopathy should be treated with corticosteroids, whereas praziquantel should only be given when neurological symptoms have resolved, as we stated in the discussion. Indeed, these two cases clearly illustrate the futility and the danger of treating acute schistosomiasis with praziquantel, whereas early use of corticosteroids might contribute to a more rapid resolution of the symptoms. The need to look carefully for neurological symptoms in individuals with acute schistosomiasis and to treat these patients with corticosteroids if necessary is the principal message of our article. Laure Houdon * and Denis Malvy “
“Infections caused by Burkholderia pseudomallei are rare in nonendemic areas, such as Scandinavia. We report the first two cases of melioidosis in Norway presenting with bacteraemia and splenic and prostatic abscesses, respectively.

, 2011); and a late stage (day 112), when the maximum bacterial b

, 2011); and a late stage (day 112), when the maximum bacterial biomass was measured although phenol oxidase slightly decreased (Fig. 1). The LmPH gene was amplified by PCR from the three leaf litter decomposition stages, and a total number of 148 good quality www.selleckchem.com/products/Gefitinib.html sequences were obtained from cloning experiments. The estimated rarefaction curves in each sample approached saturation, indicating a good coverage of LmPH gene richness (Fig. 2). All subsequent analyses were performed using an OTU-based approach of the deduced amino acid sequences at a 0.1 cutoff level. The analysis of sequences from the three stages

resulted in 16 different OTUs, nine of them being specific for either the initial or the midterm stage. OTU 14 was the most abundant

and contained LmPH sequences from the initial (11 sequences), the midterm (22), and late (33) stages. The second most abundant Apitolisib in vitro OTU 3 (12 sequences) was exclusively composed of sequences from the initial stage. Other highly represented OTUs, such as OTUs 15 and 16, grouped exclusively sequences from the midterm and late decomposition stages. The potential functional differences between communities over the course of leaf decomposition were investigated by deducing kinetic properties of bacterial phenol hydroxylases. LmPH genes can be assigned to different functional groups according to changes at selected positions of the amino acid sequence (Futamata et al., 2001). Key amino acid residues at positions 217, 252, and 253 (position numbering based on the Pseudomonas sp. CF600 dmpN gene sequence) may facilitate the prediction of theoretical Michaelis–Menten semi-saturation constants for most uncultured microorganisms

(Viggor et al., 2008). Most of the retrieved sequences (86) belonged to the betaproteobacteria low-Ks LmPH group, previously defined by Futamata et al. (2001) and U0126 in vitro grouped separately into clusters A and E (Fig. 3). LmPH sequences in cluster A showed significant similarities (> 80%) to phcN, tbc1D, and afpN genes from Comamonas testosteroni, Burkholderia cepacia, and Alcaligenes faecalis, respectively. On the other hand, cluster E contained LmPH sequences with high similarity with phenol-degrading genes from Comamonas sp. and Alicycliphilus sp. Sequences from the three stages appeared in both clusters, although those from the late stage were less abundant in cluster E. All sequences in cluster B except one (LATE13_E10) were retrieved from the initial and midterm stage samples. Sequences in this cluster exhibited high sequence diversity and grouped into eight different OTUs. Higher similarities (84–94%) were found to LmPH sequences retrieved from noncultured microorganisms from benzene-contaminated soils or trichloroethylene-contaminated aquifers.

5) In UA159, cystine starvation resulted in

5). In UA159, cystine starvation resulted in selleck a lower growth yield as well as a longer doubling time (Tdc. 93.3 ± 0.7 min) compared with its growth in the presence of cystine (Tdc. 76.3 ± 1.5 min), indicating that l-cystine is required for optimal growth of S. mutans. However, growth was completely abolished in SmTycABC under cystine starvation. Supplementing the modified growth medium with 0.1 mM cystine slightly improved the drastic growth impairment of the SmTcyABC mutant (Tdc. 118.2 ± 0.8 min). Similar to the SmTcyABC transporter mutant, the TcyR-deficient mutant (SmTcyR) had a longer doubling time (Tdc. 117.2 ± 3.8 min)

under cystine-supplemented (1 mM) conditions relative to wild type (Fig. 5). In contrast to SmTcyABC, SmTcyR was able to survive under cystine-deficient conditions, although its doubling time was remarkably increased relative to wild type (Tdc. 261.0 ± 11.9 min). Also importantly, growth kinetics of SmTcyR revealed a notable increase in the lag time regardless of the presence or absence of cystine, compared with the wild-type UA159 and SmTcyABC. We further evaluated the effect on growth by individual components of the TcyABC operon by conducting growth studies on mutants deficient in each gene. Briefly, growth kinetics were monitored for the TcyA, find more TcyB, and TcyC

transporter mutants in modified MM without cystine (Fig. 6). The most drastic effect on growth was observed for SmTcyB. Similar to TcyABC, growth of this mutant was completely abolished without cystine. Although TcyA and TcyC were able to grow in cystine-deficient medium, their

growth was tremendously impaired relative to wild type as judged by their longer doubling times; Tdc. 131.3 ± 4.8 and 214.8 ± 21.5 min, respectively. Sperandio et al. 2010 also showed impaired growth in the form of pinpoint colonies when their TcyA mutant was grown in chemically defined medium with the addition of cystine as the sole sulfur source. However, they did not investigate the growth of other Tyc ABC mutants. The ability of some of our TycABC mutants to grow in the absence of cystine, albeit in an impaired fashion, suggests that the presence of other amino acids (i.e. glutamate and leucine), inorganic sulfur, and/or ammonium sources were sufficient to sustain growth. S. mutans possesses amino acid biosynthetic pathways and even though most amino acids are not freely available in the Progesterone environment, some strains are able to synthesize all the necessary amino acids required for survival (Liu & Ferro-Luzzi Ames, 1998; Albanesi et al., 2005). The ability of S. mutans to scavenge and compete for limited nutrients in the plaque biofilm is an important aspect that confers an ecological advantage, which facilitates its survival and persistence in the oral cavity. The amino acid transport system in S. mutans UA159, encoded by the tcyABC operon that is induced under cystine-starved conditions, functions to maintain growth by transporting cystine into the cell.

Uptake of [14C]-Neu5Ac was not stimulated by Na+ for cells expres

Uptake of [14C]-Neu5Ac was not stimulated by Na+ for cells expressing NanT and in fact was inhibited slightly (Fig. 4a). In contrast, uptake in the absence of Na+ was minimal for cells Selleck Etoposide expressing the STM1128 and SiaPQM transporters, but was stimulated by the addition of Na+ (Fig. 4b and c), demonstrating

Na+ dependence for these two transporters. For both the SSS and TRAP transporters, the specificity for Na+ was demonstrated by observing that neither Li+ nor K+ could restore Neu5Ac uptake (not shown). However, the presence of added Li+ or K+ had the same effect on NanT-mediated transport as that observed for Na+, suggesting that the increased ionic strength is the most probable cause of the apparent inhibitory effect of Na+. We were able to demonstrate the obligate Na+ requirement of the SSS and TRAP transporters by comparing cultures on solid minimal BAY 73-4506 research buy medium containing Neu5Ac and either sodium or potassium salts (Fig. 4d). Secondary carriers are driven by gradients and hence are, by definition, reversible. One frequently observed phenomenon of uptake via secondary carriers is that cells can be

forced to exchange a preinternalized substrate upon addition of excess extracellular substrate (Poolman & Konings, 1993). Examination of this phenomenon, the so-called ‘cold chase’ experiment, revealed ID-8 that preinternalized [14C]-Neu5Ac was removed from

SEVY1 pES41 (STM1128+) cells by addition of 1 mM exogenous Neu5Ac, but not by a similar addition of water (Fig. 5). This is consistent with the behaviour of a secondary carrier such as NanT and differs from the SBP-dependent secondary carrier SiaPQM (Mulligan et al., 2009). Bacterial genome sequencing has revealed the presence of sialic acid utilization genes in a wide range of bacteria from human pathogens to marine bacteria. In this study, we have used a ΔnanT strain of E. coli to characterize two known and one putative sialic acid transporter genes from bacterial genomes, providing for the first time experimental evidence that a member of the SSS family of transporters, the STM1128 protein, can transport Neu5Ac. The STM1128 transporter appears to be a typical member of the SSS (TC 2.A.21) family of secondary carriers in that its activity is dependent on Na+ and it is a reversible transporter. Although we have not investigated the exact specificity of this particular SSS transporter in detail, the observations that homologous SSS transporters are predicted to be the only route for sialic acid acquisition in some bacteria (Fig.

When the investigated strains were sensitive to both compounds

When the investigated strains were sensitive to both compounds Panobinostat cost of the combination, additive interactions were frequently noticed. Synergistic interactions were observed in many cases when a strain was sensitive only to the azole compound (as in certain combinations with ATO or ROS) or the statin compound (as in certain combinations with FLU). In many combinations with an additive effect, the concentrations of drugs needed for total growth inhibition could be decreased by

several dilution steps. Similar interactions were observed when the variability of the within-species sensitivities to some selected drug combinations was investigated. The number of immunocompromised individuals with an enhanced susceptibility to opportunistic fungal infections has increased significantly in recent decades (Singh, 2001). These mycoses are predominantly caused by Candida and Aspergillus species Ku-0059436 in vivo (Walsh & Groll, 1999), but the incidence of infections due to zygomycetous fungi has also risen (Kauffman, 2004; Chayakulkeeree et al., 2006). As the treatment of these fungal infections is frequently hampered by the lack of an efficient antifungal agent, there is increasing interest in the application of combination antifungal therapy. Coadministration of two or three antifungal

compounds may improve the efficacy of the treatment, and extends the spectrum of activity; furthermore, resistance also may be avoided and toxicity reduced using lower concentrations of the chemotherapeutic agents (Nosanchuk, 2006). As a result, a number of studies have focused on the antifungal activity of nonantifungal drugs, and on the Cyclin-dependent kinase 3 development of efficient antifungal combination therapy involving such compounds (Afeltra & Verweij, 2003; Galgóczy et al., 2009a). Statins are used to reduce the cholesterol level in the blood. They are competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, which catalyzes a rate-limiting step in the acetate–mevalonate pathway of the terpenoid biosynthesis

(Liao & Laufs, 2005). Statins were originally identified as secondary metabolites of fungi, and various natural, chemically modified and synthetic compounds are now available commercially, including lovastatin (LOV), pravastatin (PRA), simvastatin (SIM), fluvastatin (FLV), atorvastatin (ATO) and, most recently, rosuvastatin (ROS) and pitavastatin (Schachter, 2005). Statins are currently used for hyperlipidemia control and protection from cardiovascular events, but they have other pleiotropic properties, including anti-inflammatory, immunomodulatory and antioxidant effects (Liao & Laufs, 2005). In addition, there is increasing evidence for the potential use of statins in preventing and treating infections (Falagas et al., 2008; Galgóczy et al., 2009b), as they attenuate the pathogenicity of microorganisms, modulating the signaling and other regulatory pathways involved in controlling infection (Sun & Singh, 2009).